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STOICHIOMETRY & MICROBIAL METABOLISM 

Growth-
Limiting Factor 

Energy: Carbon 
supply & quality 
 
AND/OR 
 
Nutrients:  
Nitrogen, 
Phosphorus 

60:7:1 C:N:P (Cleveland & Liptzin 2007 Biogeochemistry) 



Sinsabaugh & Follstad Shah 2012 Ann Rev of Ecol Evol & Syst  

microbe substrate 

ecoenzyme 

CO2 

O2 Microbes use ecoenzymes to ‘mine’ 
organic matter for C, N, P 

Ecoenzyme Code Resource Example Source 

β-1,4-glucosidase BG C cellulose 

Phenol oxidase POX C lignin 

Leucine aminopeptidase LAP N proteins, polypeptides 

Alkaline phosphatase  AP P phospholipids, phosphosaccharides 



Sinsabaugh, Hill, & Follstad Shah 2009 Nature   
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C:P 

Ecoenzyme ratios are ~ 1:1 
across broad scales 
 
Production of ecoenzymes 
can be costly:  
 

• Ratio > 1: greater C 
investment 

• Ratio < 1: greater N or P 
investment 
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ECOENZYME SCALING  
RELATIONSHIPS 
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More labile More recalcitrant 



 
URBAN WATER INFRASTRUCTURE – NOVEL STRESSORS 

 

Xiao et al. 2018 Soil Biology & Biogeochemistry 

 

+ N, P fertilization stimulates BG activity, 
while LAP, AP, & POX activity declines (n.s.) 
 

+ C + N + P 



Great Salt Lake 

Jordan River (4th order) 

Are there consistent relationships between source water 
contributions, water quality, & ecoenzyme activity rates & ratios? 
 

Do ecoenzyme stoichiometric relationships hold for urban river 
systems with chronic inputs of C, N, & P?  
 

Catchment size: 2,085 km2 

Population size: 1.12 million people  
Land use: 44% urban  



Division of Water Quality 8 
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E.coli, TDS, 
Cu, OE, DO  

E.coli, TDS, 
OE, DO  

E.coli, TDS, 
OE 

E.coli, TDS, 
Temp 

TDS, OE, 
Temp, Se  

OE, Temp  

As, TDS 

E.coli, TP, 
OE, DO  

Great Salt Lake 

Utah Lake 

SFS Meeting 

JORDAN RIVER, UT 

Low dissolved oxygen 
(DO) in downstream 
reaches  U.S. EPA 

303d listing  TMDL 
process 

 

2013 DWQ report:  
Too much organic 

matter  high BOD 
 
 

 
 

Leaves 

Algae 

Effluent 



Organic substrates can be derived (& recycled) from both 
autochthonous & allochthonous sources 
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s 



Follstad Shah et al. 2019 
J. of the Amer. Water Res. Assoc. 



DATA COLLECTION 
(May, August, Nov., 2016) 

 

• Discharge & water isotopes 
(18O, 2H) for water sources 
• River 
• Inputs – Utah Lake, effluent, 

tributaries 
• Outputs – diversions 

• Water physiochemistry & 
enzymes (river & effluent) 
• DOC 
• NO3-N, NH4-H, TDN 
• PO4-P, TDP 
• β-1,4-glucosidase (BG) 
• Leucine aminopeptidase (LAP) 
• Alkaline phosphatase (AP) 
• Phenol oxidase (POX) 
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C) Fall
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Utah Lake 
Groundwater 
+ Tributaries 

SPRING 

SUMMER 

FALL 

Utah Lake 
Canals 

Groundwater 
+ Tributaries 

Effluent 

Effluent 

Effluent 

Water infrastructure 
alters dominant sources 

of water to river 
 

… and effluent 
represents 30-70% of 
inputs in all seasons  

(from river km 22-64) 



WRF effluent means (SE) 
DOC: 4.95 (1.17) mg/L 

TDN: 15.14 (1.72) mg/L  
DIN: 12.05 (1.32) mg/L 
TDP: 2.20 (0.20) mg/L 
PO4: 1.37 (0.23) mg/L 

Riverine means (SE) 
DOC: 2.87 (0.24) mg/L 
TDN: 5.11 (0.38) mg/L  
DIN: 4.37 (0.35) mg/L 
TDP: 0.44 (0.08) mg/L 
PO4: 0.23 (0.02) mg/L 

WRF effluent has 1.7 x more DOC, 3.0 x more TDN,  
& 5.0 x more TDP than the river 
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WRF location 

Creek location 

Dilution by tributaries 

Utah Lake algal bloom  Effluent dominates inputs 

Surplus canal diversion & shading 

Effluent elevates concentrations 
at all locations in all seasons Differences in water 

inputs are reflected in 
spatial and seasonal 
variation in water 
chemistry 

Follstad Shah et al. 2019 
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Elevated inorganic 
nutrient supply should 
suppress ecoenzyme 
activity 
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SPRING: 
• BG (& DOC) is stable 
• LAP is stable & high  
• AP is most variable  

(no consistent response 
to effluent inputs) 
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SUMMER: 
• BG increases along the 

flowpath  
(with decline in DOC) 

• LAP is stable & high 
(despite elevated NO3)  

• AP switches to higher 
rates downstream 
(despite elevated PO4); 
still no consistent 
response to effluent input 



October

August

May

20 40 60 80

20 40 60 80

20 40 60 80

1000

10000

1000

10000

1000

10000

River Kilometer

E
E

A
 (

u
m

o
l 
L

-
1
 h

r-
1
)

AP BG LAP River Effluent Oil Drain Wetland
A

P,
 B

G
, o

r 
LA

P
 a

ct
iv

it
y 

(μ
m

o
l L

-1
 h

r-1
) 

FALL: 
• BG increases along 

flowpath 
(with elevated DOC) 

• LAP is stable & high 
(despite elevated NO3)  

• AP switches back to 
higher rates upstream 
(despite elevated PO4); 
higher rates in response 
to effluent from older 
WRFs 

Ecoenzyme responses 
do not clearly follow 
the ‘economics of 
ecoenzyme allocation’ 



Sinsabaugh, Hill, Follstad Shah 2009 Nature   

ln
 B

G
 

C
ar

b
o

n
 A

cq
u

is
it

io
n

 

C:N 

C:P 

ln
 B

G
 

ln
 B

G
 

ln NAG + LAP 

ln AP 

JORDAN RIVER: 
• Ratios are within range of observed 

river values 
• Ratios indicate imbalance in N & 

sometimes P relative to C 
• BG is 2 orders of magnitude greater 

than POX  labile C substrates 
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Epstein, Kelso & Baker 2016 Urban Ecosystems 

upstream downstream 

P:R > 1 P:R < 1 

Flux:  
g m-2 yr-1 

 

P:R > 1 
 

Flux:  
g m-2 yr-1 

 

P:R < 1 
 

Epstein et al. 2016 Urban Ecosystems  

DOM is the dominant form of organic matter in the system. 
Higher loads of it downstream support net heterotrophy. 
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1:1 line 

slope = -0.85 
r2 = 0.01, p = 0.62 

slope = 0.91, n.s. 
slope = 0.94, n.s. 
slope = 1.38, n.s. 
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Concurrent large inputs of C, N, P result in an 
uncoupling of ecoenzyme activities 

C:N C:P N:P 

Slopes are equal amongst seasons. Hence, uncoupling is 
unrelated to seasonal resource switching. 

SMA regressions (SMATR) 
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PARADOX: Water column resource supply suggests microbes 
may be co-limited by C & P due to high N inputs, yet ecoenzyme 
data suggest microbes are ‘N-limited’. 



The microbial community relies upon a DOM pool comprised of 
labile DOC and protein-rich substrates  

(algae, effluent by-products, lysed bacteria) 

PROTEINS & PEPTIDES 
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s 

TRANSLATIONAL MESSAGE: In order to mitigate low DO in 
dry flow conditions, factors lending to the production of 
protein-rich DOM substrates  must be considered. 
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THANK YOU. QUESTIONS? 
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